同济大学智能交通新兴计算与感知研究课题组,在JCR一区期刊International Journal of Pavement Engineering发表了由杜豫川、翁梓航、李峰、古丽妮尕尔•阿卜来提、吴荻非、刘成龙撰写的研究论文“A novel approach forpavement texture characterisation using 2D-wavelet decomposition”。本文提出了一种二维小波分解的方法来表征从三维激光扫描仪获取的路面纹理。该方法将路面三维纹理分解为九个层级(从0.1 毫米到25.6 毫米),并提取纹理多尺度的特征。选取相对能量和二维熵作为表示表面纹理分布特性的指标。通过八种类型路面的指标计算,发现多尺度指标分布与路面级配分布有较高的相似度。本研究还进行了100 小时的车辙仪碾磨测试,结果表明平均轮廓深度(MPD) 与宏观纹理的能量高度相关,而微观纹理的相对能量和二维熵在碾磨过程中下降。此外,路面表面纹理在两个方向上的变化不同,微观纹理的相对能量在车轮运动方向上比在垂直于车轮运动方向上衰减得更快。本文提出的指标可用于测量由于交通磨损引起的路面
同济大学智能交通新兴计算与感知研究课题组,在中科院1区Top期刊TransportationResearch Part D发表了由刘成龙、杜豫川、Wong S.C.、常光照、蒋盛川撰写的研究论文“Eco-based pavementlifecycle maintenance scheduling optimization for equilibrated networks”。该研究成果主要介绍了一种用于路面养护的双层优化框架,以最大限度地减少用户均衡路网中的燃油消耗。所提出的模型通过制定网络平衡与各种维护活动之间的相互作用扩展了现有领域的研究。在研发路面全生命周期衰变模型时,本文考虑了交通量、路面服役年限、初始条件和养护作业造成的干扰。在优化过程中进一步研究了由路面平整度和养护封路引起的额外费用损失。开发了改进的主动集求解算法来不断优化解决方案。本文通过将Eco-based与其他两种主流策略(劣路先修法和阈值控制法)进行比较来测试所建立双层优化模型的性能。结果表明,相比于其他方法,基于生态路面全生命优化模型可额外降低约20%的路网燃油消耗,有助于长期维护决策并降低能源成本。论文链接:h
近日,由同济大学作为项目负责单位、课题组杜豫川教授牵头组织申报的国家重点研发计划项目“弹性交通系统信息物理建模与评估理论方法研究”获得批复立项。该项目是在弹性交通研究领域首个获批立项的国家级重大研究项目,联合了包括东南大学、北京航空航天大学、长安大学、西南交通大学和深圳市城市交通规划设计研究中心股份有限公司等国内交通领域顶尖研发机构。项目聚焦全球普遍关注的交通系统弹性(Resilience)提升问题,面向大城市交通出行需求强度大、扰动冲击频度高、风险因素类型多等特点,以系统常态扰动下鲁棒可靠、异常冲击下快速恢复为目标,首次提出构建基于信息物理系统(Cyber-Physical System, CPS)架构,发展流程可溯、状态可知、运行可控、系统可用的弹性交通信息物理系统(CPS-T)通用理论体系,为新一代交通基础设施规划设计、运行管理、更新再造提供可靠的理论基础。项目研究预期将有效提升我国城市交通系统在自然灾害和突发事件冲击下的综合应对能力,助力我国交通强国建设。
同济大学智能交通新兴计算与感知研究课题组,在中科院1区Top期刊Transportation Research Part C: Engineering Technologies上发表了题为“Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning”的研究论文,论文作者为同济大学的杜豫川(Yuchuan Du)、陈菁(Jing Chen)、赵聪(Cong Zhao)、刘成龙(Chenglong Liu),埃因霍芬理工大学(EindhovenUniversity of Technology)的Feixiong Liao,和加州大学伯克利分校(University of California, Berkeley)的Ching-Yao Chan。该研究提出了一种面向舒适和节能的自动驾驶速度决策控制框架,采用了新兴的深度强化学习建模方法,通过实测数据仿真验证了其有效性。研究成果为车路协同环境下自动驾驶速度决策控
奖项介绍“中国公路学会科学技术奖”由国家奖励工作办公室批准设立,是面向全国公路交通行业的权威科技奖项。2020年度“中国公路学会科学技术奖”评审工作已悉数完成,课题组杜豫川教授作为第二完成人,沈煜副教授参与申报的项目“综合客运枢纽协同设计及智慧运营关键技术”荣获科学技术一等奖。该项目由深圳市城市交通规划设计研究中心股份有限公司、同济大学、中铁第四勘察设计院集团有限公司、华为技术有限公司、上海宝信软件股份有限公司、腾讯云计算(北京)有限责任公司等单位协作,由张晓春、杜豫川、陈振武、田锋、龙俊仁、林涛、杨宇星、金立、黄波、周子益、成诚、许燕青、沈煜、李魁、周勇主要完成。项目概述项目针对综合客运枢纽在多智能体仿真驱动的枢纽空间设施布局协同设计技术、基于AI的大客流波动识别及预测技术、基于客流波动的动态流线组织和多模式交通响应调度技术、基于个体差异化需求的出行全过程引导服务技术、基于常旅客识别与服务水平动态优化的快捷安检服务技术等五大智慧运营关键技术上取得突破。研究成果相对于国内外同类技术,模型迭代反馈频率更高,评价精度、跟踪精度、定位精度更加精准,日常安检和应急疏散更加高效,取得了显著的社会
2021年5月29日上午,上海市副市长张为一行实地调研了徐汇区龙华烈士陵园周边道路系统改造工程和数字化智能管养工作。上海市交通委副主任刘斌、市道运局副局长戴敦伟等参加调研。徐汇区副区长毕桂平等陪同调研。张为在现场观看了由同济大学与徐汇市政管理中心共同打造的城市道路数字化智能管养系统及核心装备演示,听取了课题组杜豫川教授关于市政道路设施数字化应用场景设计、轻量化检测装备创新特点以及系统平台与业务流程结合实际效果的介绍。他充分肯定了同济大学在城市市政管理数字化转型中作出的技术贡献,指出要以数字化手段推进城市精细化管理,助力交通基础设施全寿命管养,实现城市运营的降本增效。2020年11月,徐汇区市政管理中心联合同济大学交通运输工程学院率先启动了道路智慧管养改革试点项目。该项目针对徐汇区全域278公里的市政道路,依托轻量化智能巡检设备、高频多维道路设施全息感知设备等新型巡检装备,结合人工智能、大数据等智能分析技术,建立基础设施数字化管养系统,积极推进市政道路智慧管养体系升级。该系统单日巡检和数据分析能力超过1000公里,试点应用以来,共发现并跟踪病害及损伤近万条,派单养护整治病害2000余处,